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Summary An important methodological element in the research of cell cycle 
regulation is the very accurate measurement of the cell size, which can be solved by 
measuring time lapse microscopic photographs. The model organism used for the 
measurement is Schizosaccharomyces pombe. The publication discusses the functional 
analysis and validation strategy of software designed to automate measurement. Based on the 
given methodology, an automated software testing and validation system can be created. 
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Introduction 
A very important area of research in bioinformatics is the study of the 

regulation of cell division. Within this, the regulation of cell size control is an 
interesting issue of which software side is addressed by the present research. 
Schizosaccharomyces pombe, a fission yeast was selected as model organism, 
because its growth is longitudinal, as growth is limited to the two cell ends. The 
cylindrical cells of the wild-type fission yeast are on average 7-8  long at 
birth and have a constant diameter during the whole cell cycle of about 3.5  
By the end of the cell cycle, near division the cell length becomes 13 14  [1]. 
The duration of the cell cycle is 2-4 hours, so 60-100 images are taken per cell 
with recording every two minutes. Division is usually regulated by the cell mass, 
or cell volume, which in this case is a linear function of cell length, so it can be 
measured fairly accurately. The measurement itself can be accomplished by 
evaluating a time-lapse microscopic series of live, unstained cells and followed 
with the processing by fitting the appropriate model functions. 
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Figure 1 Histogram of a microscopic photo with unstained Schizosaccharomyces 
pombe cell culture. The photo was created with 8 bit grayscale coding, but the real width 

of the range of pixel colours is only 15. 
 
Evaluation of the time-lapse recordings is a time-consuming task. In order 

to obtain meaningful information about the growth pattern of a culture, a 
representative number of cells must be monitored for growth during the cell 
cycle. The large number of recordings to be evaluated raises the need to develop 
an automated evaluation method that speeds up the process, thus facilitating the 
work of researchers involved in cell cycle studies. This paper presents the 
development of an automatic cell size determination algorithm and the 
automated validation of the first version of this software (later ASAP). 

Nowadays automatic image processing and object detection are frequently 
occurring computer science problems. Algorithms using AI that implement 
different machine vision are able to accurately identify very complex objects in 
real time (e.g. YOLO, LENET). However, this is typically depending on the 
availability of image information (color components, normal histogram). 
Unfortunately, in this case, this condition is only partially met. Because we want 
to study living and natural cells, staining techniques to contrast the cells cannot 
be used. Thus, cells can produce contrast-deficient, grayscale images in which 
the detection of the cell contours is not trivial. Figure 1 shows a histogram of 
such a microscopic photograph. On the other hand, we expect the software to 
have an object detection accuracy close to 100%, as well as the appropriate 
measurement accuracy. 

During the development of the software, the following research questions 
arose. At algorithm development, possible algorithms should be tested. The 
question is from what criteria can the software be qualified? What criteria 
system should be defined in the software requirements specification? It is worth 
formulating the requirements in such a way that validation can be automated 
based on them, so that it can be possible to test several target algorithms. 
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Proposal 
The accuracy of the cell contour recognition must be specified in the 

software requirement specification. The theoretical goal is nearly 100% 
accuracy in the cell recognition. Although a semi-automatic cell detection 
algorithm would be acceptable at the end-user level of the software, it makes the 
automated validation impossible. In the case of cell contour recognition, the goal 
is to maximize the accuracy, and this step can be separated from the subsequent 
measurement, so a separate test should be suitable in the first phase of 
validation. 

The second requirement concerns the accuracy of the measurements. 
Before assigning a completely arbitrary accuracy at 5% or 10%, it is worth 
considering this issue carefully. In essence, we want to replace expert 
measurements with automated software; hence the requirement of the software 
is to reach a similar decision with the expert at the end of the measurement 
process. 

During the measurement, the cell length is determined regularly through 
the entire length of the cell cycle, and then a cell growth model is set up. The 
biochemical background is discussed in the relevant literature. During modeling, 
a linear, bilinear, or exponential model can be fitted to the measured data using 
statistical methods [2]. 

Fitting the models is a minimum search task, in which the values for the 
parameters of the functions to be fitted have to be found and at which the sum of 
the squared errors (SSE) formed from the difference between the values of the 
measurement points and the function is as small as possible. In the first 
approximation of the different functions, the one with the smallest value of SSE 
can be considered the most adequate. If we have more variable parameters, we 
have a better chance of achieving a better fitting with the functions fitted to the 
data points. Based on these principles the adequacy of the bilinear function 
against the exponential can be questioned. In many cases, an exponential 
function can be fitted with a similarly high correlation coefficient to the growth 
considered bilinear, but at the same time it does so with far fewer parameters. In 
this case, the model with the smaller number of parameters should be preferred 
to the model with the larger one. It can be seen from this that it is not enough to 
base the selection of the appropriate model only on the correlation coefficient; 
furthermore it is necessary to use more complex statistical measures, so-called 
model selection criteria. AIC (Akaike Information Criterion) and SBIC 
(Schwarz Bayesian Information Criterion) determine a quantitative measure of 
fitting quality based on the SSE value and the number of parameters used for 
matching. 

The lower this value, the more adequate the model is. Increasing the 
number of parameters used for matching is said to penalize the model. The two 
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mentioned criteria differ in rigidity, because SBIC penalizes the increasing
number of parameters more severely than AIC [3].

In this way, the selection of a particular model for the points obtained
when examining the growth of a cell will be statistically better supported.

According to the linear growth model, the growth rate of the cells is
constant throughout the studied phase. The model can be characterized by two
parameters, one is the slope of the function, which is actually the growth rate of
the cells and the other is the axis section which corresponds to the length
of the cell at birth.

(1)        ( ) = + ,
where L is the cell length is the slope / min], is the axis

section t is the time [min].
According to the exponential growth model, a simple two-parameter

exponential function is perfectly suitable for describing cell length.
(2) ( ) = ,
where L is the cell length is the estimated cell length at birth

is the specific growth rate [1 / min], t is the time [min].
The third most important growth model for fission yeast is the bilinear

model. According to the model, the growth pattern can be characterized by two
sections with different slopes, which are separated by the gear shift point.

We fitted a bilinear function to the measurement results, in which the
transition is not a sudden breaking point, but rather an exponential transition
phase. The more accurate name of the model is linearized biexponential because
it is obtained as the sum of two exponential functions. Far enough away from
rate change point (RCP2), the value of one exponential term in the expression is
negligibly small next to the other. For this we take the natural-based logarithm,
thus obtaining the first or the second bilinear stage, depending on which
exponential term in the sum is very small. In the transition range, the value of
none of the exponential terms in the function is negligible. Its use is more
advantageous than that of a bilinear function with a sudden breaking point,
because, on the one hand, it can be continuously differentiated and, on the other
hand, it is closer to reality, since the change in growth rate in cells is not
necessarily instantaneous. The model has five parameters.

(3)

where, L is the cell length t is the time [min], and are the
slopes of the two linear sections / min] is the parameter determining the
width of the transition range During the fit, its value was allowed to
change between 0.01 and 0.5 This is because above the interval, a
significant part of the growth phase falls in the transition range and the fitted
bilinear function already looks more exponential. And below the range, the
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program cannot handle the huge numbers generated in this case, is the
time of occurrence of RCP2 [min], is a constant additive term

The width of the transition range depends not only on the value of but
also significantly influenced by the value of and The following formula
can be calculated:

(4) ,

where and are the slopes of the linear sections, is the width
parameter [3], [4].

Akaike information criterion at small sample sizes the second order AIC:
(5)
(6)
SBIC (Schwarz Bayesian Information Criterion)
(7) ,
where nobs the number of data points and npar is the number of parameters.
The proposed validation process is as follows: Measurement of a

representative amount of cells in the series of photos and calculation of the
growth model, then the same is done automatically using the software.
Validation can be traced back to an automatic measurement after modeling, and
modeling and comparison of the resulting growth patterns.

Methods
Time-lapse images of fission yeast growth were taken by photographing

every two minutes in the usual experimental setup and conditions[1], [2], [4].
Software development was the development of an algorithm containing

elements of a standard image processing pipeline. Because multiple image
enhancement procedures were required due to the poor histogram of the image,
the use of neural networks in the recognition was discarded, and classical image
processing methods were used instead.

Algorithm
During the algorithm development, we chose to use the classical image

processing pipeline, in which the specific processing algorithms were optimized
separately for each unit. Figure 2 shows the main processing steps. Gaussian
Blur calculates the new value with a normal distribution. The sigma value of the
distribution along the x and y axes can be specified separately with a parameter.
The Gaussian filter was applied with a 5x5 kernel.

It has been suggested that since the dynamic range of the image, i.e. the
difference between light and dark parts, is small, contrast compensation can
improve this, but this did not change the efficiency of the further image
processing functions, so we did not use this option.

An adaptive thresholding method was used for edge detection. This differs
from simple thresholding in that it analyzes the image in details and makes a
decision based on the value of the pixels within it. The evaluation function can
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be a mean or a normal distribution. You can specify the size of the area to be
examined at one time, or a constant that can be used to reduce the calculated
value before evaluating the pixels.

The Satoshi Suzuki and Keiichi Abe algorithms were used for contour
search. From the detected shapes the too small ones were deleted from the
image.[5]

Post-processing: Two morphological functions of the library were used.
The two basic operations of these algorithms are erosion and dilation. First an
open operation was used to remove any residual noise from the image. It is a
combination of an erosion followed by a dilation. The other operation used is the
open, is the reverse of the close function, which is a dilation after an erosion.
These are for close the tiny gaps between the outlines.

Contour search and sorting
Find an enclosing rectangle.
At the end of the process, a preprocessed image is available on which the

automated measurement can be performed after accurate cell contour
recognition (fig 3.).

Figure 2 Applied image processing pipeline

The algorithm was implemented using the OpenCV image processing
library.[6]

The ASAP software can be download from
https://github.com/hajnaleva/ASAP.git [7]

Preparation for validation
The measurements of the automatic algorithm were executed and

measured results of relevant cells from the image were collected. The selection
of cells for measurement is an expert decision based on the viability of the cells
and the cell density shown in the image.

The selected cells were measured with manual measurements using
ImageJ software according to the previously applied protocol [8].
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Figure 3 A, A microscopic image before processing, the edges of the image are 

darker than the central part which implicated the usage of the adapted thresholding 
method. B. Image after the image processing before the measurement. 

 
Validation of the ASAP software is based on the statistical comparison of 

the obtained results. 
The first phase of validation is to determine the accuracy of the automatic 

recognition of cells pre-selected by the expert. After counting the cells, the 
accuracy can be calculated. 

The second phase of validation is the statistical analysis of cell length 
measurement. Since the same identified cells are measured with the automated 
software as with the manual determination, the deviation of the measurements 
can be checked by a pairwise T test. However, because we want to separate the 
two phases of validation, we used a two-sample T test instead of this one 
followed by regression analysis. In the regression tests, the null hypothesis was 
the 0 slope of the regression line; the obtained results were interpreted at 95% 
significance level. For each cell, for each measurement point the difference and 
the quotient of the results of the two programs were calculated. The obtained 
differences and quotients were then subjected to regression analysis. Linear 
regression was performed for each cell using Minitab, separately for differences 
and separately for quotients. It was examined, whether there is any correlation 
between the elapsed time and the differences and quotient. 

The third phase of validation is the comparison of models fitted to cell 
lengths measured with ASAP and by an expert with help of ImageJ. The model 
fitting was established by a statistical software (Minitab), according to the 
proposal, however it can be automated later. 

Results 
The results show that the cells are misrecognized at a large number of 

measurement points. Table 1 shows the accuracy of automatic cell detection for 
10 cell lines compared to expert evaluation. It is important to note that not all 
missing points were due to the ASAP error. 
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Table 1: First phase of validation, accuracy of cell detection during tracking the 
growth of ten cell lines. COUNTA the number of valid cell detection, COUNTE contains 

the number of photos, third row is the accuracy. 
 1 2 3 4 5 6 7 8 9 10 TOTAL 

COUNTA 66 77 65 63 72 75 58 66 70 62 674 
COUNTE 67 79 69 69 74 78 70 78 75 71 730 

ACCURACY 99% 97% 94% 91% 97% 96% 83% 85% 93% 87% 92% 

 
In some images, the cells were not visible clearly due to a filming error. In 

comparison, 73 cell lines were measured with an expert and more than 5 
consecutive missing values were measured in one case, 1 measurement point 
was missing in 32 cases, and all data could be successfully measured throughout 
the remaining 40 cells.  

Overall, we can say that the accuracy of cell detection is more than 90%. 
Experiences have shown that recognizing the pattern of state around the cell 
division is a problem for ASAP software. 

The second phase of the validation is the examination of the cell length 
measurements. Table 2 shows the differences between the ASAP and ImageJ 
measurements. The relative difference is ~4% which can be categorized 
theoretically into the excellent category. Table 3 shows the T probe and linear 
regression results between the difference of the two measurements, quotient of 
the two measurements and the elapsed time. Generally, the absolute difference 
can be constant, which means that it could be compensated with a fix factor, or 
in some cases it is negatively correlated with the elapsed time which means that 
it can be compensated with a linearly decreasing factor. 

 
Table 2 The accuracy of cell length measurement between ASAP and ImageJ 

measurements 
 

CELL 
NUMBER 

MEAN DIFFERENCE 
BETWEEN IMAGEJ 

AND ASAP 
MEASUREMENTS IN 

PIXELS 

MEAN RELATIVE 
DIFFERENCE 

BETWEEN IMAGEJ 
AND ASAP 

 
1 4.79 5% 
2 2.60 3% 
3 3.63 4% 
4 2.36 2% 
5 5.64 7% 
6 2.94 3% 
7 3.85 4% 
8 4.11 4% 
9 4.35 5% 
10 3.13 3% 

MEAN 3.74 4% 
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Table 3 Linear regression results of the difference and quotient of the ImageJ
and ASAP measurements with time. Null hypothesis is the 0 slope.

NUMBER OF
CELLS

DISTRIBUTION

CONSTANT DIFFERENCE 25 35%

NEGATIVE CORRELATION
OF DIFFERENCE AND
QUOTIENT

31 44%

OTHER 15 21%

The last part of validation is checking the model fit. Based on the
measurements, a model was fit to 52 cells and Fig. 4 shows the distribution of
the models fitted by the two methods. It can be seen that ASAP fitted a linear
model to most of the cells, while expert evaluation chose the bilinear model in
most cases. Unfortunately, the distributions of the models fitted by the two
methods do not match.

Figure 4 Results of the third phase of validation: the fitted models by manual
expert measurements (ImageJ) and automated by ASAP software

Conclusion
It has become necessary to develop a software to facilitate the research of

cell division regulation. As a result of the software development, the ASAP
software were created, which is able to detect cells and automatically determine
cell lengths on microscopic images of living, unstained cells. The software was
validated using a complex statistical method. There were three phases of
validation. The first phase evaluates the accuracy of cell recognition. Based on



 723 

this, it can be concluded that the software has a cell recognition accuracy of over 
90%. 

The second phase of the test is aimed at the accuracy of the cell length 
determination and the statistical analysis of the deviation. Based on this, the 
average error is within 5%, and this is likely to be further corrected by a 
correction factor to an even lesser extent. 

The third phase is a model selection statistical study to clarify that 
according to the cell length measurements performed with the software and 
model fitting, which functions can be obtained. 

Although the software gave a very good result for the superficial observer 
in the first and second studies, in the third phase it proved that it resulted in a 
completely different fitted model distribution compared to the expert 
measurements and model fitting. Based on this, it can be concluded that the 
software is not yet applicable for this research. However, the performed expert 
work and the developed validation methodology can be automated and used in 
the further development of the software. An opportunity for further development 
is to use a genetic algorithm to find a correction factor for which the deviation 
from the expert measurement is minimal, and to minimize the deviation in the 
distribution of the fitted cell growth models. Another direction of the 
development is to fine-tune the cell contour detection module of the algorithm. 

It is a lesson that it is not enough to target some preconceived precision, 
but the precision itself is the subject of serious examinations. Overall, the 
specification of a software requirement sometimes needs serious statistical 
considerations and the automatic use of professional standards is not sufficient. 
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DYNAMICS OF SOLAR ACTIVITY AND 

TEMPERATURE ANOMALIES ON THE SURFACE OF THE 
BLACK SEA 
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Miroslav Kostov 

 
 

Alstract:  Peculiarities of the dependence of the temperature anomalies on the surface 
of the Black Sea and the dynamics of the solar activity at the same time have been studied. 
The causal relationship between the increase in solar activity and the increase in the 
temperature of the Black Sea surface is demonstrated. Meteorological data to explain the 
asynchrony in the time series are also included in the analysis process. 
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