

Mobile Robot Environment for SLAM

Albin Nátrán

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

natran.albin@stud.uni-obuda.hu

Károly Széll
Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

szell.karoly@amk.uniobuda.hu

ORCID: 0000-0001-7499-5643

Abstract— The paper introduces a mobile robot system in a

virtual environment. The mobile robot can travel autonomously

and implement SLAM by using sensor data. The system is

prepared for later hardware implementation for benchmarking

different SLAM algorithms.

Keywords—mobile robot, SLAM, virtual

I. INTRODUCTION

One of the main areas of research in recent decades has
been the navigation of mobile robots. Its main criteria are good
and precise localization. The most common localization
technology is GNSS (Global Navigation Satellite System).
This system ensures the absolute position of the Earth with
excellent accuracy. However, the accuracy of a system is
greatly influenced by environmental factors such as a cave,
city, or tunnel. The resulting error can result in inaccuracies of
up to meters, which is not acceptable for autonomous
navigation of a mobile robot. Therefore, they need to represent
their environment in some form. The starting point for this can
be a 2D map. This map can consist of geometric features, but
even more complex objects. With this consistent map, the
mobile robot will be able to detect free spaces, obstacles and
landmarks.

This type of localization approach is called simultaneous
localization and mapping (SLAM). SLAM is the process by
which a robot or robotic system uses sensors to create a map
of its surroundings and at the same time estimate its position.
From this information, the mobile robot can plan its own route
without human intervention.

SLAM can be created with several complex algorithms
that create different maps. However, there is no standard for
comparing maps. Therefore, it would be worthwhile to
develop a method that allows the comparison of different
algorithms. [1]

II. HARDWARE

The basis of the robot is an iRobot Roomba 605. Roomba
is very good at creating a robust platform with useful
accessories. The systems they provide may operate for years.
It is outstandingly good in terms of parts support. The Roomba
605 is an omni robot. It has a very good weight distribution.
Its wheels are driven by two separate motors and can be turned
by a spherical wheel. It has a built-in IR and bumper sensors.
Can be integrated into ROS. Numerous research and hobby
developments have already has been done with this model.
There is also a model called Create which is designed
specifically for robotic developments. [4]

Roomba alone is not able to meet the defined criteria.
Therefore, a Lidar-based sensor must be added. In this project
the RPLIDAR A1M8 had been chosen.

There is only one essential component left which is the
controller The Raspberry Pi 3 B + is the most appropriate. It
supports Ubuntu and ROS. It has built-in Wi-Fi which can be
used as communication protocol (see Fig. 1.). [2]

Fig. 1: Structure of the elements

III. SIMULATION

Due to the high computational demands of the simulation,
a personal computer was chosen as the basic hardware. ROS
partially supports Debian, Gentoo, Mac OS X, Arch Linux,
Android, Windows, and Open Embedded. However, ROS's
primary operating system is Ubuntu. The three most popular
distribution is the Indigo, Kinetic and Jade Turtle. [3]

ROS Indigo and Kinetic are currently widely supported
distributions. Indigo is the most stable version; however,
essential packages are missing from it. Jade Turtle is the latest
version, but because of that it is least stable. The kinetic
distribution of ROS offers a trade-off between the two
versions. Therefore, the best choice is the Ubuntu 16.04 (LTS)
with ROS Kinetic distribution. [3]

CoppeliaSim proves to be a remarkably better choice than
its peers. It has an integrated development environment and
fast algorithm development capabilities. [5]

80

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

The simplest way to describe this simulation environment
is a three-tier model. The hardware is in the first layer. The
second layer is the operating system that manages the
hardware and the application layer which in the simulation
runs. It is important to note that the simulation must be
designed in such a way that it can be considered a real robot
by another program. Therefore, no other layer or
communication protocol is required in that case.

Fig. 2: Structure of the simulation

Following the example of the physical mobile robot, a
virtual mobile robot was built. It’s easy to create a new model,
but it’s important to keep in mind that the goal is to create a
model that looks good, provides a well-optimized, and stable
simulation.

The scene objects were divided into two groups. The first
group includes the objects needed to build a mobile robot. The
second group is environmental objects, which include walls,
obstacles, and other objects.

In a new scene one opportunity is to model individual
shapes from primitive shapes. In this case, shapes are well
optimized and can be handled dynamically by the simulation
program. However, these shapes do not reflect the shape of the
robot. Therefore, the already completed 3D models were used.
This makes it as accurate as possible externally. After
importing, the scales are needed to be set and each shape
named.

Fig. 3: Model elements

All the shapes required for the external appearance of the
mobile robot are visible. To easily handle forms, grouping is
required. There are three groups. The first is Roomba, the
second is Platforms and the third is Lidar. After compilation
and grouping of all the forms, the model is complete.
However, it is not yet suitable for simulation. Pure shapes
must be created from these shapes.

After creating the pure shapes, the model became very
complex in structure. Each triangle in the simulation requires
a calculation therefore the program becomes very slow. The
model needs to be simplified. The number of triangles must
be reduced. This can be done by using the Decimation
function. There are also triangles inside the model, these are
not necessary elements for simulation, which can be deleted
by the Extract inside of selected shape function.

Fig. 4: Simplified model

The original model contained about 25,000 triangles. After
simplifications, that number dropped to only 5,000. Further
simplification is also possible using the Shape edit mode.
However, the goal is not to oversimplify.

To get nearly the same point cloud when testing the virtual
and real mobile robots, a test track is necessary. For the first
tests a common apartment was chosen.

The test environment is a 56 square meter panel apartment,
the layout of which can be seen in Figure 5. The CoppeliaSim
model library contains almost all the elements needed to
model the apartment.

81

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

Fig. 5: Environment

The scene consists of three main rooms. The first is the
living room and dining room, followed by the hallway and
finally the bedroom. For the mobile robot to be able to detect
walls and obstacles, each object is defined as a dynamic
element. When the simulation starts, the doors open
automatically at a 90-degree angle.

Hierarchy design is an important element of simulation. It
facilitates to make a logical connection between each element.
The Roomba is located at the top followed by the platforms
and finally the Lidar.

Fig. 6: Simulation

IV. CONTROL ALGORITHM

Once the real and virtual mobile robot is complete, the
design of the control module followed. It was realized in
Matlab environment. Control of the robot can also be solved
on the personal computer, which is running the simulation,
however, its resources were not sufficient to perform both
tasks at the same time. Therefore, a dedicated PC was used as
a ROS master. The PC is running Windows 10 operating
system. Supported by Matlab.

The program code is divided into four parts. In the first
part, the blocks responsible for ROS communication can be
found. The second part is the collision avoidance block. The
third part is the Navigation block and the last is the SLAM
implementation blocks.

Avoiding obstacles is one of the key issues for mobile
robot systems. It must include some kind of collision
avoidance. It is necessary to implement an algorithm that
detects the obstacle and stops the robot. It then avoided the
obstacle and progressed towards his goal. Topics provide the
necessary information to develop the algorithm.

A custom block was also implemented. It has a total of five
input parameters. Two of these cannot be linked to ROS. The
first is the maximum speed. Basically, between -1 and 1.
Speed values can be specified. However, with this solution we
can also reduce and increase this value. The other is the
emergency stop, in case of unwanted operation of the robot we
can stop immediately. The other inputs are the known Topics.
At the output, the Topics are transmitted necessary for the
robot to move and the motion ban, which indicates if there is
an obstacle near the robot. The emergency stop can take two
values. 0 does not require a stop, the robot is working properly.
A value of 1 indicates when a stop is required. [6]

If there is no collision, control is passed to the navigation
block. Basically, the logic uses permutation of input values to
detect and avoid collisions. An example of this is if the right
bumper sensor has sent a value of 1 but another sensor has
zero then there is an obstacle on the right side of the robot. In
this case, the robot shifts to reverse and begins to turn left.
After a value of 0 is repeated for all sensors, it transmits
control. [6]

If the mobile robot were equipped with an accurate
location system, there would be no need for a navigation
block. The robot would always know its position. However,
this is not possible for the reasons mentioned.

There are several options for navigation. The most
common method is to use localization points. In this case, the
robot knows its surroundings and has an accurate map. To get
from the starting point to the specified destination, a route
planning algorithm is needed that calculates the optimal route.

Another method is to focus only on avoiding a collision.
The robot is constantly moving forward, if it detects an
obstacle, it will dodge and continue its journey. The biggest
disadvantage of this is that the crawl time cannot be
determined. It can easily turn out that the robot is unable to
find a way out of a room and gets stuck. Therefore, this
method can only be used effectively in open spaces.

It is important for the robot to be able to map even
unknown environments. Thus, a navigation form was
necessary that facilitates it. As a result, an algorithm was
chosen that follows the walls.

The algorithm is based on odom Topic. Based on the Lidar
data and orientation, the distance to the wall can be determined
and the degree of orientation error can be determined from
this. If the error rate is 0, the robot travels parallel to a wall. If
this value is non-zero, a correction is required. The Lidar has
0 ° and 360 ° viewing angles that can be narrowed down
dynamically to get the best results. After determining the
orientation error, it must be defined which wall the robot will
follow. The easiest way is to find the nearest wall. [6]

Complementing the two indices with the necessary
orientation. The difference between the measured and the
required orientation gives the amount of error that has not yet
been evaluated. The two sub-systems contain the necessary
data structural changes. Based on the obtained data, a Matlab
function block calculates the required speed and direction.[6]

Matlab is a great help in creating SLAM. There is an
official Matlab example program that can implement SLAM
from Lidar point cloud data. However, to do this, the full point
cloud data structure must first be established.

82

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

There are two possible solutions to this problem. First, the
Matlab example program can be used with different SLAM
algorithms on a pre-saved point cloud. In this case, the map
can only be compiled after the robot has gone through the
entire test track. It also follows that its usability can only be
evaluated after that. Since the robot uses a ROS framework,
the other option is to use standalone ROS Nodes. This solution
is more efficient as different algorithms can be applied
simultaneously.

V. CONCLUSION

The paper introduced a simulation environment that is
based on an iRobot Roomba hardware platform. The system
is based on ROS framework, CoppeliaSim simulation
environment and Matlab. The implemented environment is
prepared for the hardware implementation with the purpose of
testing relevant SLAM algorithms.

ACKNOWLEDGMENT

The authors thankfully acknowledge the financial support
of this work by the Howmet Aerospace Foundation, the
Arconic Foundation, and the project no. 2019-1.3.1-KK-
2019-00007 implemented with the support provided from the
National Research, Development and Innovation Fund of
Hungary, financed under the 2019-1.3.1-KK funding scheme.

REFERENCES

[1] L. Joseph és J. Cacace, Mastering ROS for Robotics

Programming - Second Edition, 2018.

[2] „What is Raspberry Pi?,” [Online]. Available:

https://www.raspberrypi.org/help/what-%20is-a-

raspberry-pi/ (accessed on 25.10.2021)

[3] G. Staples, „ROS Distributions,” 11 06 2020. [Online].

Available: http://wiki.ros.org/Distributions (accessed on

25.10.2021)

[4] „iRobot Roomba 605,” 2021. [Online]. Available:

https://www.irobotthailand.com/en/shop/irobot-

roomba-605/ (accessed on 25.10.2021)

[5] „Coppeliaslim User Manual,” Coppeliaslim, 2021.

[Online]. Available:

https://www.coppeliarobotics.com/helpFiles/ (accessed

on 25.10.2021)

[6] „Robotic System Toolbox,” 2021. [Online]. Available:

https://www.mathworks.com/products/robotics.html

(accessed on 25.10.2021)

83

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

Automation of EDM Machines

Márk Liszi

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

liszi.mark@stud.uni-obuda.hu

Károly Széll

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

szell.karoly@amk.uni-obuda.hu

ORCID: 0000-0001-7499-5643

Abstract— The automation of metal working machines is

usually done for cycle time reduction and for the increase of

capacity and precision. This project was started mainly to

reduce the downtime between the installation of parts onto the

machine. Also, the working conditions next to an electric

discharge machine can be harmful to the human body in a

long-term period. Collaboration of human and industrial

robot will be used to create a semi-autonomous production

cell of four electric discharge machining (EDM) machines.

Keywords—robotics, manufacturing, automation, industry

4.0, electric discharge machines, industrial robot, robot cell

I. INTRODUCTION

With the use of electric discharge machining (EDM)[1],
[2] we must agree with the fact, that the material remove
rate is far not as fast as we are used to with CNC machines.
Consequently, companies trying to fit as many workpieces
into the machines as possible and they are making a mistake
there. It is self-evident that they are trying to maximize their
productivity but with the oversized fixtures they make the
pallet and workpiece change longer. Especially if they
cannot run another pallet because the short of space.

With the creation of an autonomous robot cell, we will
try to reduce our downtimes caused by the change of the
workpiece and the fixture. Dual education gives us the
opportunity to use the resources of the university and also
the industrial environment [11]. Thus, our solution can be
implemented in simulation and in real-world as well. This
paper focuses on the simulation environment.

II. MACHINED PARTS

 The workpieces are made of nickel-based superalloys.
The electrodes what we are using for material removal are
made of graphite. During the machining process relatively
huge amount of metal is removed. Also, a thin layer of
graphite is burned down from the electrode in each
discharging process. The volume of the waste material
creation under a full machining session creates about a
bucket (5 liters) of sludge.

These workpieces can be found more than twenty different
shapes within the area of the factory. For our project we will
care about the three most identical. The smallest, the largest
and the heaviest composition (see Fig. 1.).

TABLE I. MAIN PARAMETER OF WORKPARTS

Workpieces’ parameters

Part name Overall dimension Weight/piece Pieces / fixture a

Part1 156x79x30 mm 1,1 kg 24

Part2 170x367x244 mm 40 kg 2

Part3 488x610x235 mm 53 kg 1

a. According to the current fixtures.

Fig. 1. The model of the largest fixture installed onto the EDM machine

According to the previously mentioned sludge
accumulation the use of a conventional zero-point system is
impossible. Previous experiences show that most type of
commercially available zero-point sets are not sealed
enough to handle this amount of waste material. While they
are properly separate the dielectric liquid and all solid
particles in it if the two segments are attached. As soon as
the spigot is moved out of the clamp, sludge and dust can
enter the clamping system (see Fig. 2.). Furthermore, the
manual cleaning process were not precise enough and small
amount of solid particle could get inside the clamping unit
from the spigots.

Fig. 2. Cross section of an conventional spigot-clamp assembly [9]

III. DOWNTIMES

Currently the change of parts in the fixture happens while
the fixture is installed onto the EDM machine. After the
finished parts has been taken out from the fixture, the
operators have to clean up its place for the next unmachined
part.

In case of installing another fixture to the machine the
operators first must have the zero point of the pallet.

84

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

