

Hand Gesture Controlled Robot

Dávid Bárándi

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

barandidavid@stud.uni-obuda.hu

Károly Széll
Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

szell.karoly@amk.uni-obuda.hu

ORCID: 0000-0001-7499-5643

Abstract— Robot manipulators in factories are usually

used in automatic mode, running a pre-written program. My

goal with this project was to be able to control the robot

manipulator in real time with hand movements. This would

allow in the future, by using augmented reality and a mobile

robot manipulator, to work in places that would be dangerous

for human life (e.g., chemical environment, extreme cold/hot

environment.)

Keywords—robotics, ROS, automation, industry 4.0, hand

detecting and tracking, collaborative robot, OpenCV, Mediapipe

I. INTRODUCTION

Many examples in modern robotics show that, in some
cases, seamless and real-time control is needed. In many
cases it is difficult to control a robot with a keyboard or with
the control panel of the robot itself. Gesture-based robot
control is where a human can control the robot with hand
movements and does not need to enter numerical values
with a keyboard or control panel. This is suitable for
controlling any robot in areas where human operation is not
feasible for safety reasons [1]– [3]. So, you can control the
robot safely in front of a TV or PC [4].

Thanks to the development of the Robotics Laboratory
at the Alba Regia Faculty of Technology of Óbuda
University, students will gain access to the most common
industrial robots and collaborative robotics in industry. The
collaborative robot in the lab can be used by any student to
extend, develop, and test different ideas [5]– [8]. The
collaborative robot is a Universal Robots UR5 e-series 6
degrees of freedom multifunctional co-robot.

II. PROBLEM DESCRIPTION

I have taken the following aspects into account in the
design:

• Implementation with minimum hardware
requirements

• Plug n play with any webcam and universal
robots

• 3D movement with a webcam

• Integrating OpenCV into ROS

The main problem was caused by the different Python
versions. OpenCV and Mediapipe only works with Python3,
while ROS Melodic uses Python2. The reason for choosing
ROS Melodic over the newer ROS Noetic (which already
supports Python3) is that the Universal Robots GitHub page
for the package recommends Ubuntu 18.04, which only runs
ROS Melodic.

III. STRUCTURE OF THE ENVIROMENT

The project only required a Universal Robots UR5 e-
series collaborative robot and a webcam. For image
processing, I used the Open-Source Computer Vision
Library (OpenCV) with Python3, and for hand recognition
and tracking, I used Mediapipe developed by Google, also
with Python3. Mediapipe was chosen because we wanted to
track not only the hand itself, but also the hand points, to
allow for the description and teaching of gestures in the
future (see Figure 1.)

Figure 1. Hand recognition with OpenCV and Mediapipe

Universal Robots UR5e

Technical Data of UR5-e (see Figure 2.):

• Maximum reach: 850 mm

• Weight with cable: 20.6 kg

• Maximum payload: 5 kg

• Degrees of freedom: 6

Figure 2. UR5e

72

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

IV. STRUCTURE OF THE PROGRAM

Figure 3. Structure of the program

The developed system uses live video stream for gesture
recognition. It monitors in real time the position of the
points on the hand and issues movement commands to the
robot based on this information. The proposed technique
Robot system operation is divided into four subsections:

• Setup ROS environment

• Hand detection with OpenCV and Mediapipe

• Processing data from hand detection

• Sending motion commands to the robot

A. Setup ROS environment

Robot Operating system (ROS) is a flexible framework
for creating robot programs. Every ROS project needs a
central core on which to hang other nodes that perform
complex tasks. For this project, I used the Universal Robots
factory package as the core. The package includes Moveit
and Rviz (see Figure 5.), a visualization environment that
allows me to easily design the path needed to move the robot
and Rviz was used for one of the safety elements.

B. Hand detection with OpenCV and MediaPipe

The project is based on the HandTrack.py file (see Figure

3.). To detect the hand, I used the open-source computer
vision library (OpenCV) and Mediapipe. OpenCV can be
used to draw lines on the camera image so that I can draw
the origin point and the threshold zone, where the robot
stops moving when the tracked point is reached. For hand
recognition and tracking I used Mediapipe, which is an
open-source Python package developed by google which is
perfect for hand recognition. It places a landmark of 21
points on the recognized hand, the points of which I used to
control the robot (see Figure 4.).

C. Processing data from hand detection

The data from HandTrack.py is collected by the
Talker.py (see Figure 6.) file and passed to the Listener files.
The Talker.py file is the publisher node which is the
transition between Python2 and Python3. The subscriber
nodes are the Listener nodes. These files decide whether the
robot should move in a positive or negative direction on a
given axis, and they also define the size of the step per
instruction and the threshold zone (marked with red lines,
see Figure 1.). Listener_z.py is the file where the initial
length of the segment between point 1 (WRIST) and point
12 (MIDDLE_FINGER_TIP) is defined (see Figure 4.). If
the length of the segment increases by a factor of 1.2 during
hand tracking, the robot moves in a positive direction, if it
increases by a factor of 0.8, the robot moves in a negative
direction on the axis. Here it is important that the hand is in
front of the camera when starting the Main.py file, because
only then can the length of the section be recorded,
otherwise the robot will only move on 2 axes.

D. Sending motion commands to the robot

The Main.py file (see Figure 7.) is responsible for the
movement commands. The starting position and the
orientation of the TCP are defined here. In addition, the
Main.py file collects the data returned by the Listener files
and sends it to the robot, which executes it in the form of a
motion. The program's motion, designed with state and
executed with the real robot's state, is displayed in Rviz, so
that we can even remotely control the robot manipulator
after modeling the robot's environment.

Figure 4. Mediapipe hand landmarks

Figure 5. UR5e in Rviz

73

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

Figure 6. Talker.py during running

Figure 7. Main.py during running

V. SAFETY FUNCTIONS

During testing, the robot follows unpredictable
trajectories after losing track of the hand. Three main safety
features were implemented to avoid unexpected trajectories.
First, the robot's workspace was virtually constrained. This
was solved within Rviz by creating a simple safety cage. We
were able to limit the range of motion sufficiently so that the
robot cannot damage its environment. When the robot
reaches the green wall, it stops automatically (see Figure 8.
). Secondly, when the program detects too much movement
at the hand between two image refreshes, it stops
immediately. This is necessary because if the detection of
the hand is incorrect, the robot may receive incorrect data
which can lead to unpredictable movement paths and
possible collisions. Finally, when the camera loses hand
tracking it sends a 0 value to the robot so that the robot stops
moving, so there is no need to stop the program in case of
signal loss.

Figure 8. UR5e in Rviz with the safety cage

VI. PROBLEMS DURING PROJECT AND OPPORTUNITUES

DEVELOPMENTS

The project has encountered several problems. The main
problem with 3D movement is that only the distance
between 0 and 12 points is observed, so a fist strike is
enough to move the robot. To solve this problem, we need
to replace the webcam with a Microsoft Kinect V2 [5]– [9],
which is capable of depth sensing, which would solve this
problem. The other big problem is software optimization.
The software currently works at a very low FPS. The
consequence of this is that it is not possible to make fast
movements with the hand because it loses tracking, this
should be optimized in the future. One possible solution
could be to rework the structure of the program and include
Kinect Studio if Kinect V2 is used. This would allow faster
movements and tracking on the robot side. With Kinect
Studio, it would be possible to program and teach dedicated
gestures [3], [14] and hand signals, which would facilitate
working with a collaborative robot. Another solution could
be to re-implement difficult computational parts/modules in
C++, e.g., with python bindings. The use of Leap Motion
for higher accuracy was considered, but we could not test
and implement this because Leap Motion is not available at
the university.

VII. CONCLUSION

The document presents a preliminary project for
scientific studies and research. The robot can be controlled
by hand gestures in the following ways. The robot will move
along the x, y and z axes depending on the quarter of the
camera image in which the tracked point on the hand (see
Figure 4.), in this case point 0 WRIST, is located and the
length of the segment between point 12
MIDDLE_FINGER_TIP and point 0 WRIST increases or
decreases compared to the initial length recorded at startup.
The experimental results show that with shorter steps and
higher robot speed, a less skilled, more fluid and more
accurate movement can be achieved. In the future, we would
like to replace the webcam with a Kinect V2 or a Leap
Motion sensor for more accurate hand detection.
Furthermore, we would like to rewrite the more resource-
intensive modules or, if necessary, the whole program in
C++ to achieve higher performance.

74

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

ACKNOWLEDGMENT

The authors thankfully acknowledge the financial

support of this work by the Howmet Aerospace Foundation,
the Arconic Foundation, and the project no. 2019-1.3.1-
KK-2019-00007 implemented with the support provided
from the National Research, Development and Innovation
Fund of Hungary, financed under the 2019-1.3.1-KK
funding scheme.

REFERENCES

[1] “Gesture-controlled user interfaces, what have we

done and what’s next? | Request PDF.”

https://www.researchgate.net/publication/2288156

83_Gesture-

controlled_user_interfaces_what_have_we_done_

and_what’s_next (accessed Oct. 15, 2021).
[2] “Gesture-controlled user interfaces, what have we

done and what’s next? | Request PDF.”

https://www.researchgate.net/publication/2288156

83_Gesture-

controlled_user_interfaces_what_have_we_done_

and_what’s_next (accessed Oct. 15, 2021).

[3] J. L. Raheja, R. Shyam, U. Kumar, and P. B.

Prasad, “Real-time robotic hand control using hand

gestures,” ICMLC 2010 - The 2nd International

Conference on Machine Learning and Computing,

pp. 12–16, 2010, doi: 10.1109/ICMLC.2010.12.

[4] D. Ionescu, B. Ionescu, C. Gadea, and S. Islam,

“An intelligent gesture interface for controlling TV

sets and set-top boxes,” SACI 2011 - 6th IEEE

International Symposium on Applied

Computational Intelligence and Informatics,

Proceedings, pp. 159–164, 2011, doi:

10.1109/SACI.2011.5872992.

[5] M. Pogatsnik and R. B. Kendrovics:

Communication and Reading Comprehension

among Informatics and Engineering Students, 2020

IEEE 18th World Symposium on Applied Machine

Intelligence and Informatics (SAMI), Herlany,

Slovakia, 2020, pp. 235-240, doi:

10.1109/SAMI48414.2020.9108764.

[6] Módné Takács Judit, Pogátsnik Monika: The

online learning from the students’ perspective, In:

Szakál, Anikó (szerk.) 2021 IEEE 19th World

Symposium on Applied Machine Intelligence and

Informatics (SAMI), Budapest, Magyarország :

IEEE Hungary Section (2021) 507 p. pp. 00027-

00032. , 6 p.

[7] György Györök, Bertalan Beszédes. Artificial

Education Process Environment for Embedded

Systems. In: Orosz, Gábor Tamás (szerk.) 9th

International Symposium on Applied Informatics

and Related Areas - AIS2014. Székesfehérvár,

Magyarország : Óbudai Egyetem, (2014) pp. 37-

42. , 6 p.

[8] Pogátsnik Monika: Dual education: connecting

education and the labor market, Opus et Educatio

Volume 8. Number 3., pp. 304-313, DOI:

http://dx.doi.org/10.3311/ope.466

[9] Y. Liu, M. Dong, S. Bi, D. Gao, Y. Jing, and L. Li,

“Gesture recognition based on Kinect,” 6th Annual

IEEE International Conference on Cyber

Technology in Automation, Control and Intelligent

Systems, IEEE-CYBER 2016, pp. 343–347, Sep.

2016, doi: 10.1109/CYBER.2016.7574847.

[10] M. R. L. Varshini and C. M. Vidhyapathi,

“Dynamic fingure gesture recognition using

KINECT,” Proceedings of 2016 International

Conference on Advanced Communication Control

and Computing Technologies, ICACCCT 2016, pp.

212–216, Jan. 2017, doi:

10.1109/ICACCCT.2016.7831632.

[11] E. P. Ghonge and M. N. Kulkarni, “Gesture based

control of IRB1520ID using Microsoft’s Kinect,”

Proceedings of the 2nd International Conference

on Communication and Electronics Systems,

ICCES 2017, vol. 2018-January, pp. 355–358, Mar.

2018, doi: 10.1109/CESYS.2017.8321298.

[12] Y. Wang, C. Yang, X. Wu, S. Xu, and H. Li,

“Kinect based dynamic hand gesture recognition

algorithm research,” Proceedings of the 2012 4th

International Conference on Intelligent Human-

Machine Systems and Cybernetics, IHMSC 2012,

vol. 1, pp. 274–279, 2012, doi:

10.1109/IHMSC.2012.76.

[13] C. W. F. Cueva, S. H. M. Torres, and M. J. Kern,

“7 DOF industrial robot controlled by hand

gestures using microsoft kinect v2,” 2017 IEEE 3rd

Colombian Conference on Automatic Control,

CCAC 2017 - Conference Proceedings, vol. 2018-

January, pp. 1–6, Jan. 2018, doi:

10.1109/CCAC.2017.8276455.

[14] R. C. Hsu, P. C. Su, J. le Hsu, and C. Y. Wang,

“Real-Time Interaction System of Human-Robot

with Hand Gestures,” 2nd IEEE Eurasia

Conference on IOT, Communication and

Engineering 2020, ECICE 2020, pp. 396–398, Oct.

2020, doi: 10.1109/ECICE50847.2020.9301957.

75

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

Dynamic Arc Stabilization Options for Gas

Metal Arc MIG/MAG Robot Welding

István Elek Kiss

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

istvanelekkiss@gmail.com

 Dr. Károly Széll

Alba Regia Technical Faculty

Óbuda University

Székesfehérvár, Hungary

szell.karoly@amk.uni-

obuda.hu

ORCID: 0000-0001-7499-5643

Abstract - As the number of welding experts and the
cost of automation are reduced, the use of robotics is
becoming increasingly important in this field. The purpose
of this article is to introduce the automation of the
production of a given component as a use case for
university studies and experimental settings for further
research. The part had previously been welded by hand,
but the growing annual order number has necessitated
robot welding. The article presents a new welding device
that uses a robotic arm equipped with relevant sensors.

Keywords—MIG/MAG welding, robot welding, welding

sensors, digital education

I. INTRODUCTION

Nowadays, the number of skilled welders is declining. In
order to perform quality work, the presence of welding robots
is becoming more widespread, in both manufacturing and
development areas. [1]

Improving production with a welding robot in most cases
does not mean improving the equipment, but improving the
production environment. For example, it is a common
applicability advantage to repair a welded part device for
proper quality production. [2] However, this solution is in
most cases too expensive, time consuming and does not even
provide adequate quality.

When using sensors for robotic welding [3](see Fig. 1.), it
is advisable to use a non-contact welding seam tracking
system. The intelligent laser sensor (SLS) must be mounted so
that it faces the welding gun. The SLPr (Smart Laser Probe)
(see Fig. 2.) is responsible for positioning the welding head
and also for the welding wire to be in the correct connection.
This intelligent laser probe, for most simple straight seams,
offers significant benefits in terms of quality and productivity.

Fig. 1: Robot welding with sensor

 The second section of the paper describes the basics of the
problem of a welding robot like fixing the workpiece, the
coordinate systems of the robot arm and welding.[4] The focus
of the third section is the design of the welding jig mentioning
those topics which might be important in education. The
fourth section introduces a simulation environment for robot
Smart Laser Probe which is a completely new and fairly
effective approach to seam tracking. Leveraging the latest in
electronics and digital technology, SLPr raises seam tracking
to a better level of standard system performance.[5]

Fig. 2: Smart Laser Probe

II. TYPICAL APPLICATION

Smart Laser Probe is the tracking system of choice for
machine welding applications such as:

• Welding lathes for air, water and all types of
cylindrical tanks

• Linear machines, such as side beam, travel carriage
and seam welders

• Gantry welders, such as railway wagon side and roof
welders

• Simple column and boom applications

Key Features of SLPr include:

• Very high-quality, high-resolution image generation
by exploiting several novel and unique design
features

76

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

• Fully digital system in corporating a completely up-
to-date control structure

• User friendly operator interface

• Wide range of standard sensors and interface options
for different applications.[6]

 If the sensor is used during welding, the programming time
is significantly shortened, and the position of the seam can be
determined more precisely. I would like to explain this by an
example (see Fig. 3.). Welding must be performed on an arc
marked in blue.[7]

Fig. 3: Programming line by sensor

 P1- the starting point of welding P2 is the end point of
welding When programming, I record point P1 as the starting
point where the robot will start welding. Point P2 is the end
point where the welding is completed. If the sensor is switched
off, the welding robot connects the two points in a straight
line, so the robot would follow the dotted line. By switching
on the sensor, the robot takes into account the “pattern” of the
given welding radius, thus following the actual welding arc
between the two points.

III. PROBLEM DESCRIPTION

As shown in Figure 4., the sensor is attached to the welding
gun. One of the biggest disadvantages of Smart Laser Probe is
that there is approx. 80 mm constant distance. [8]

Based on these, the robot will not actually start welding at
point P1 (figure 3.), but 80 mm forward. We program a
specific welding dimensions and determine the tolerance
range.

As there is an 80 mm difference between the detection line
and the actual welding point, the deformation due to welding
is not detected by the robot within this section. This
phenomenon is a problem because even in this range, a few
tenths of a mm of deformation occurs due to heat input from
welding. After determining the position of the workpiece, the
next step was to design the fixation.

Fig. 4: Head with attached sensor

IV. PROPOSAL

The proposed solution to the aforementioned error is to use

an arc sensor. [9]

Through Arc Seam Tracking (TAST) allows the robot to

follow the welding seam vertically, the distance between the

gun and the workpiece, observing changes in the welding

current.

The information provided by TAST allows the system to

adjust the robot trajectory to remain the center of the weld in

the joint. The path of the robot can be set to the weaving plane

and the vertical plane (z direction of the tool). You can use

vertical tracking with or without subsequent subtracking,

with or without weaving (see Fig. 5.). [10]

Fig. 5.: Sub tracking

The use of the six-point method for property racks are
recommended to adjust the tool frame. When jogging in the
tool, the z + coordinate should move along the gun nozzle and
be away from work. The following requirements should be
met for successful tracking:

• The material thickness should be greater than 2 mm.

• Grooves should have a consistent included angle of

90 degrees or less.

• Fillet joint scan have a maximum included angle of

90 degrees and must have at least 5 mm leg length.

• The minimum weave width must be three times the

diameter of the electrode or greater.

• Tack weld, leg size, should be less than or equal than

half the weld size, if possible, and concave in

profile.

• The actual weld seam should deviate less than 15

degrees rotation from the taught weld seam.

• The torch must be positioned close to the center of

the weld seam at the start of the weld (Touch

Sensing might be necessary).

• Outside corner and lap joint fillets must use a weave

width of 2 mm less than the base metal thickness.

• Fit up of the joint (gap) must be with in normal

(blind) welding robot tolerances. Ideally, gaps

should be consistent along the weld path

• Base metal must be ferrous or have a resistance

greater than mild steel.

• TAST uses SINE type weaving only.

77

AIS 2021 – 16th International Symposium on Applied Informatics and Related Areas

