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Abstract— Robot manipulators in factories are usually 

used in automatic mode, running a pre-written program. My 

goal with this project was to be able to control the robot 

manipulator in real time with hand movements. This would 

allow in the future, by using augmented reality and a mobile 

robot manipulator, to work in places that would be dangerous 

for human life (e.g., chemical environment, extreme cold/hot 

environment.) 
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I. INTRODUCTION  

Many examples in modern robotics show that, in some 
cases, seamless and real-time control is needed. In many 
cases it is difficult to control a robot with a keyboard or with 
the control panel of the robot itself. Gesture-based robot 
control is where a human can control the robot with hand 
movements and does not need to enter numerical values 
with a keyboard or control panel. This is suitable for 
controlling any robot in areas where human operation is not 
feasible for safety reasons [1]– [3]. So, you can control the 
robot safely in front of a TV or PC [4]. 

Thanks to the development of the Robotics Laboratory 
at the Alba Regia Faculty of Technology of Óbuda 
University, students will gain access to the most common 
industrial robots and collaborative robotics in industry. The 
collaborative robot in the lab can be used by any student to 
extend, develop, and test different ideas [5]– [8]. The 
collaborative robot is a Universal Robots UR5 e-series 6 
degrees of freedom multifunctional co-robot. 

II. PROBLEM DESCRIPTION 

I have taken the following aspects into account in the 
design:  

• Implementation with minimum hardware 
requirements 

• Plug n play with any webcam and universal 
robots 

• 3D movement with a webcam 

• Integrating OpenCV into ROS 

The main problem was caused by the different Python 
versions. OpenCV and Mediapipe only works with Python3, 
while ROS Melodic uses Python2. The reason for choosing 
ROS Melodic over the newer ROS Noetic (which already 
supports Python3) is that the Universal Robots GitHub page 
for the package recommends Ubuntu 18.04, which only runs 
ROS Melodic. 

 

 

III. STRUCTURE OF THE ENVIROMENT  

The project only required a Universal Robots UR5 e-
series collaborative robot and a webcam. For image 
processing, I used the Open-Source Computer Vision 
Library (OpenCV) with Python3, and for hand recognition 
and tracking, I used Mediapipe developed by Google, also 
with Python3. Mediapipe was chosen because we wanted to 
track not only the hand itself, but also the hand points, to 
allow for the description and teaching of gestures in the 
future (see Figure 1. ) 

 

Figure 1. Hand recognition with OpenCV and Mediapipe 

Universal Robots UR5e 

Technical Data of UR5-e (see Figure 2. ): 

• Maximum reach: 850 mm 

• Weight with cable:  20.6 kg 

• Maximum payload:  5 kg 

• Degrees of freedom:  6 

 

Figure 2. UR5e 
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IV. STRUCTURE OF THE PROGRAM 

 
Figure 3. Structure of the program 

 

 

The developed system uses live video stream for gesture 
recognition. It monitors in real time the position of the 
points on the hand and issues movement commands to the 
robot based on this information. The proposed technique 
Robot system operation is divided into four subsections:  

 

• Setup ROS environment 

• Hand detection with OpenCV and Mediapipe  

• Processing data from hand detection  

• Sending motion commands to the robot 

 

A. Setup ROS environment 

Robot Operating system (ROS) is a flexible framework 
for creating robot programs. Every ROS project needs a 
central core on which to hang other nodes that perform 
complex tasks. For this project, I used the Universal Robots 
factory package as the core. The package includes Moveit 
and Rviz (see Figure 5. ), a visualization environment that 
allows me to easily design the path needed to move the robot 
and Rviz was used for one of the safety elements. 

 

B. Hand detection with OpenCV and MediaPipe 

The project is based on the HandTrack.py file (see Figure 

3. ). To detect the hand, I used the open-source computer 
vision library (OpenCV) and Mediapipe. OpenCV can be 
used to draw lines on the camera image so that I can draw 
the origin point and the threshold zone, where the robot 
stops moving when the tracked point is reached. For hand 
recognition and tracking I used Mediapipe, which is an 
open-source Python package developed by google which is 
perfect for hand recognition. It places a landmark of 21 
points on the recognized hand, the points of which I used to 
control the robot (see Figure 4. ). 

 

C. Processing data from hand detection 

The data from HandTrack.py is collected by the 
Talker.py (see Figure 6.) file and passed to the Listener files. 
The Talker.py file is the publisher node which is the 
transition between Python2 and Python3. The subscriber 
nodes are the Listener nodes. These files decide whether the 
robot should move in a positive or negative direction on a 
given axis, and they also define the size of the step per 
instruction and the threshold zone (marked with red lines, 
see Figure 1. ). Listener_z.py is the file where the initial 
length of the segment between point 1 (WRIST) and point 
12 (MIDDLE_FINGER_TIP) is defined (see Figure 4. ). If 
the length of the segment increases by a factor of 1.2 during 
hand tracking, the robot moves in a positive direction, if it 
increases by a factor of 0.8, the robot moves in a negative 
direction on the axis. Here it is important that the hand is in 
front of the camera when starting the Main.py file, because 
only then can the length of the section be recorded, 
otherwise the robot will only move on 2 axes. 

 

D. Sending motion commands to the robot 

The Main.py file (see Figure 7. ) is responsible for the 
movement commands. The starting position and the 
orientation of the TCP are defined here. In addition, the 
Main.py file collects the data returned by the Listener files 
and sends it to the robot, which executes it in the form of a 
motion. The program's motion, designed with state and 
executed with the real robot's state, is displayed in Rviz, so 
that we can even remotely control the robot manipulator 
after modeling the robot's environment. 

 

 

 

 
Figure 4. Mediapipe hand landmarks 

 

 

 

 

 
Figure 5. UR5e in Rviz 
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Figure 6. Talker.py during running 

 

 

Figure 7. Main.py during running 

 

V. SAFETY FUNCTIONS 

During testing, the robot follows unpredictable 
trajectories after losing track of the hand. Three main safety 
features were implemented to avoid unexpected trajectories. 
First, the robot's workspace was virtually constrained. This 
was solved within Rviz by creating a simple safety cage. We 
were able to limit the range of motion sufficiently so that the 
robot cannot damage its environment. When the robot 
reaches the green wall, it stops automatically (see Figure 8. 
). Secondly, when the program detects too much movement 
at the hand between two image refreshes, it stops 
immediately. This is necessary because if the detection of 
the hand is incorrect, the robot may receive incorrect data 
which can lead to unpredictable movement paths and 
possible collisions. Finally, when the camera loses hand 
tracking it sends a 0 value to the robot so that the robot stops 
moving, so there is no need to stop the program in case of 
signal loss. 

 

 

Figure 8. UR5e in Rviz with the safety cage 

VI. PROBLEMS DURING PROJECT AND OPPORTUNITUES 

DEVELOPMENTS 

The project has encountered several problems. The main 
problem with 3D movement is that only the distance 
between 0 and 12 points is observed, so a fist strike is 
enough to move the robot. To solve this problem, we need 
to replace the webcam with a Microsoft Kinect V2 [5]– [9], 
which is capable of depth sensing, which would solve this 
problem. The other big problem is software optimization. 
The software currently works at a very low FPS. The 
consequence of this is that it is not possible to make fast 
movements with the hand because it loses tracking, this 
should be optimized in the future. One possible solution 
could be to rework the structure of the program and include 
Kinect Studio if Kinect V2 is used. This would allow faster 
movements and tracking on the robot side. With Kinect 
Studio, it would be possible to program and teach dedicated 
gestures [3], [14] and hand signals, which would facilitate 
working with a collaborative robot. Another solution could 
be to re-implement difficult computational parts/modules in 
C++, e.g., with python bindings. The use of Leap Motion 
for higher accuracy was considered, but we could not test 
and implement this because Leap Motion is not available at 
the university. 

VII. CONCLUSION 

The document presents a preliminary project for 
scientific studies and research. The robot can be controlled 
by hand gestures in the following ways. The robot will move 
along the x, y and z axes depending on the quarter of the 
camera image in which the tracked point on the hand (see 
Figure 4. ), in this case point 0 WRIST, is located and the 
length of the segment between point 12 
MIDDLE_FINGER_TIP and point 0 WRIST increases or 
decreases compared to the initial length recorded at startup. 
The experimental results show that with shorter steps and 
higher robot speed, a less skilled, more fluid and more 
accurate movement can be achieved. In the future, we would 
like to replace the webcam with a Kinect V2 or a Leap 
Motion sensor for more accurate hand detection. 
Furthermore, we would like to rewrite the more resource-
intensive modules or, if necessary, the whole program in 
C++ to achieve higher performance. 
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Abstract - As the number of welding experts and the 
cost of automation are reduced, the use of robotics is 
becoming increasingly important in this field. The purpose 
of this article is to introduce the automation of the 
production of a given component as a use case for 
university studies and experimental settings for further 
research. The part had previously been welded by hand, 
but the growing annual order number has necessitated 
robot welding. The article presents a new welding device 
that uses a robotic arm equipped with relevant sensors.  

Keywords—MIG/MAG welding, robot welding, welding 

sensors, digital education 

I. INTRODUCTION 

Nowadays, the number of skilled welders is declining. In 
order to perform quality work, the presence of welding robots 
is becoming more widespread, in both manufacturing and 
development areas. [1] 

Improving production with a welding robot in most cases 
does not mean improving the equipment, but improving the 
production environment. For example, it is a common 
applicability advantage to repair a welded part device for 
proper quality production. [2] However, this solution is in 
most cases too expensive, time consuming and does not even 
provide adequate quality. 

When using sensors for robotic welding [3](see Fig. 1.), it 
is advisable to use a non-contact welding seam tracking 
system. The intelligent laser sensor (SLS) must be mounted so 
that it faces the welding gun. The SLPr (Smart Laser Probe) 
(see Fig. 2.) is responsible for positioning the welding head 
and also for the welding wire to be in the correct connection. 
This intelligent laser probe, for most simple straight seams, 
offers significant benefits in terms of quality and productivity. 

 
Fig. 1: Robot welding with sensor 

 The second section of the paper describes the basics of the 
problem of a welding robot like fixing the workpiece, the 
coordinate systems of the robot arm and welding.[4] The focus 
of the third section is the design of the welding jig mentioning 
those topics which might be important in education. The 
fourth section introduces a simulation environment for robot 
Smart Laser Probe which is a completely new and fairly 
effective approach to seam tracking. Leveraging the latest in 
electronics and digital technology, SLPr raises seam tracking 
to a better level of standard system performance.[5] 

 

Fig. 2: Smart Laser Probe 

II. TYPICAL APPLICATION 

Smart Laser Probe is the tracking system of choice for 
machine welding applications such as: 

• Welding lathes for air, water and all types of 
cylindrical tanks 

• Linear machines, such as side beam, travel carriage 
and seam welders 

• Gantry welders, such as railway wagon side and roof 
welders 

• Simple column and boom applications 

Key Features of SLPr include: 

• Very high-quality, high-resolution image generation 
by exploiting several novel and unique design 
features 
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• Fully digital system in corporating a completely up-
to-date control structure 

• User friendly operator interface 

• Wide range of standard sensors and interface options 
for different applications.[6] 

 If the sensor is used during welding, the programming time 
is significantly shortened, and the position of the seam can be 
determined more precisely. I would like to explain this by an 
example (see Fig. 3.). Welding must be performed on an arc 
marked in blue.[7] 

 

Fig. 3: Programming line by sensor 

  P1- the starting point of welding P2 is the end point of 
welding When programming, I record point P1 as the starting 
point where the robot will start welding. Point P2 is the end 
point where the welding is completed. If the sensor is switched 
off, the welding robot connects the two points in a straight 
line, so the robot would follow the dotted line. By switching 
on the sensor, the robot takes into account the “pattern” of the 
given welding radius, thus following the actual welding arc 
between the two points. 

III. PROBLEM DESCRIPTION 

As shown in Figure 4., the sensor is attached to the welding 
gun. One of the biggest disadvantages of Smart Laser Probe is 
that there is approx. 80 mm constant distance. [8] 

Based on these, the robot will not actually start welding at 
point P1 (figure 3.), but 80 mm forward. We program a 
specific welding dimensions and determine the tolerance 
range.  

As there is an 80 mm difference between the detection line 
and the actual welding point, the deformation due to welding 
is not detected by the robot within this section. This 
phenomenon is a problem because even in this range, a few 
tenths of a mm of deformation occurs due to heat input from 
welding. After determining the position of the workpiece, the 
next step was to design the fixation.  

 
Fig. 4: Head with attached sensor 

IV. PROPOSAL 

 

The proposed solution to the aforementioned error is to use 

an arc sensor. [9] 

 

Through Arc Seam Tracking (TAST) allows the robot to 

follow the welding seam vertically, the distance between the 

gun and the workpiece, observing changes in the welding 

current.  

 

The information provided by TAST allows the system to 

adjust the robot trajectory to remain the center of the weld in 

the joint. The path of the robot can be set to the weaving plane 

and the vertical plane (z direction of the tool). You can use 

vertical tracking with or without subsequent subtracking, 

with or without weaving (see Fig. 5.). [10] 

 

 
 

Fig. 5.: Sub tracking 

The use of the six-point method for property racks are 
recommended to adjust the tool frame. When jogging in the 
tool, the z + coordinate should move along the gun nozzle and 
be away from work. The following requirements should be 
met for successful tracking: 

• The material thickness should be greater than 2 mm. 

• Grooves should have a consistent included angle of 

90 degrees or less. 

• Fillet joint scan have a maximum included angle of 

90 degrees and must have at least 5 mm leg length. 

• The minimum weave width must be three times the 

diameter of the electrode or greater. 

• Tack weld, leg size, should be less than or equal than 

half the weld size, if possible, and concave in 

profile. 

• The actual weld seam should deviate less than 15 

degrees rotation from the taught weld seam. 

• The torch must be positioned close to the center of 

the weld seam at the start of the weld (Touch 

Sensing might be necessary). 

• Outside corner and lap joint fillets must use a weave 

width of 2 mm less than the base metal thickness. 

• Fit up of the joint (gap) must be with in normal 

(blind) welding robot tolerances. Ideally, gaps 

should be consistent along the weld path 

• Base metal must be ferrous or have a resistance 

greater than mild steel. 

• TAST uses SINE type weaving only. 
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